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INTRODUCTION 

This report discusses the use of adjoint variable formulation to seek the 

transient solutions for problems in gun dynamics.  The theory from variatlonal 

principle involving adjoint variables solves a mixed boundary and initial 

value problem.  The partial differential equation governing the motion has a 

fourth order partial in spatial domain and a second order partial in time 

domain.  It also involves a few step functions and delta functions as 

follows.^ »' 

pAy + (Ely")" - [PCx.^y']' + Ty"H(x-Xp) = 

ra[xp y" + ^py' + y]5(x-xp) 

- mg cos a 6(x-Xp) - pAg cos a (I) 

The above equation can be simplified into the following form 

Ly + Q = 0 (2) 

where 

Ly = (ayt)t - (Xyxx)xx + Uyx)x + Upyx)xH(x-Xp) (3) 

and 

-Q = n^Xp^y" + 2xpy, + y]6(x-Xp) - mg cos a 6(x-Xp) - pAg cos a   (4) 

We seek the explicit numerical transient solutions of y, yt, yx. yxt» yxx» 

and yxxt for some given boundary and initial conditions.  The term yxx will 

give the stress wave and the term yx will show the slope in bending, along 

^Simkins, Thomas E., "Transverse Response of Gun Tubes to Curvature-Induced 
Load Functions," presented at the Second US Array Symposium on Gun Dynamics, 
Watervliet, NY, September 1978. 
^Wu, Julian, "Gun Dynamic Analysis by the Use of Unconstrained, Adjoint 
Variatlonal Formulations," presented at the Second US Army Symposium on Gun 
Dynamics, Watervliet, NY, September 1978. 



the axis of the gun tube.  The solution is the extension of our previous 

work on initial and boundary problems.3.^ 

VARIATIONAL PRINCIPLE USING ADJOINT VARIABLE 

If the inner product of the variable y, and the adjoint forcing function 

Q are used for variational purposes, the accuracy is much less than the method 

using the following inner product by adding a term involving the adjoint 

variable y as the Lagrange multiplier (see Appendix). 

J[y.y] = <Q,y> + <y,(Q+Ly)> = 0 (5) 

where the partial differential equation is given in Eq. (2).  By taking 

variation on Eq. (5) we have 

6J = <<Sy,(Ly+Q)> + <6y,(Ly+Q)> - <6y,Ly> + <y,L6y> = 0  ^    (6) 

The above variation vanishes if 

Ly + Q = 0 (7) 

Ly + Q = 0 (8) 
and _   

<y,L5y> - <6y,Ly> = 0 (9) 

We know that Eq. (7) is actually the original p.d.e. and Eq. (8) is its 

adjoint equation.  A method should be established so that Eq. (9) holds true 

for all arbitrary variation 6y. 

3Shen, C. N. and Wu, J. J., "A New Variational Method for Initial Value 
Problems Using Piecewise Hermite Polynomial Spline Functions," presented at 
the 1981 Army Numerical Analysis and Computer Conference, Huntsville, AL, 
February 1981. 

4Shen, C. N. , "Method of Solution for Variational Principle Using Bicubic 
Hermite Polynomial," presented at the 27th Conference of Army Mathematicians, 
West Point, NY, June 1981. 



BILINEAR CONCOMITANT 

We will find out the conditions for the assumed equality in Eq. (9) to be 

true.  Let us consider the following bilinear concomitantr^ 

D = <y,Ly> - <y,Ly> (10) 

The above expression can be integrated in two different ways and can also 

be written in terms of boundary conditions and initial conditions.  It is 

assumed that these boundary conditions are assigned in such a manner that the 

above bilinear concomitant is identically zero for all independent variables, 

i.e. , 

D =  0 (11) 

Then the first variations of D also vanish. 

6D = 6D(6y) + 6D(6y) = 0 '   (12) 

Since 6y and 6y are independent of each other, then 

6D(6y) = <6y,Ly> - <y,L6y> = 0 (13) 

6D(6y) = <y,L6y> - <6y,Ly> =0 (14) 

Equation (14) is identical to Eq. (9), which is the assumed equality 

previously.  The implication is that if Eq. (11) is true then Eq. (9) or (14) 

is automatically true. 

Since Eq. (10) can be expressed in terms of some integrals involving 

boundary conditions, Eq. (11) can be true if these boundary conditions are 

satisfied.  The next section will discuss integral of bilinear expression and 

its boundary conditions. 

5Stacey, W. M. Jr., Variational Methods in Nuclear Reactor Physics, Academic 
Press, 1974. 



INTEGRAL OF BILINEAR EXPRESSION 

The integral of a bilinear expression for a two dimensional problem 

having second order partial derivatives in time and fourth order partial 

derivatives In space can be written as 
xb  tb 

I = /  /  "[y(x,t)y(x,t)]dtdx (15) 
xo  to 

where f2[y,y] is a given bilinear expression in the form 

"[y.y] - aytyt + Xyxxyxx + iyxyx + i*yxyxH(x-Xp)        (16) 

The subscripts t and x indicate the partial derivatives of the functions y and 

y- 

Equation (16) can be integrated by parts.  Two different forms of 

integration and end conditions are given.  The first form of the integral is 

obtained by integrating by parts on the adjoint variable. 

tb xb _        xb     tb 
1 = ~J   J  yLydtdx + J  ayty|  dx + 

to xo xo     t0 
tb       -  Xb _ Xb Xp xb 

J   tXyxxyxl   - (Xyxx)xy|   + iyxy\       + £*yxy|  }dt      (17) 
to X0 X0 XQ Xp 

where 
Ly = (ayt)t - (Xyxx)xx + (£yx)x + (£*yx)xH(x-Xp)       (18) 

On the other hand, we can perform integration on the original variable to 

give 
tb xb  —                 xb    -      tb 

I = -J J     yLydtdx + J        oiyty|     dx 
to xo                         x0              to 

tb         _           xb _             xb         _      xb           -      xb 

+ J  ^yxxyxl - (^yxx)xyl + ^yxy| + ^*yxy|  >dt   (19) 
to        XQ XO       XO       Xp 



where 

Ly = (ayt)t " (^yxx)xx + (^yx)x + (^pyx)xH(x-xa) (20) 

For a fourth order spatial partial and a second order temporal partial system 

Eq. (10) becomes 
xb  tb - xb  tb  — 

D = /  /  yLydtdx - J   J   yLydtdx (21) 
XQ   t0 X0   t0 

By equating Eqs. (17) and (19) and solving for D in Eq. (21) we are converting 

the double integral into two single integrals in terms of the boundary 

conditions. 

We can express the quantity D as the sum of three parts on end conditions 

Dl,   D2, and D3 as 

D = Di + D2 + D3 >    (22) 

The terms in D^ involve the initial conditions of y and y as 

xb    - tb   -  tb 
Di = /  Wty|  - ayty| >dx 

XQ     t0      t0 

xb      - - - - 
- J    (ab(ytbyb-ytbyb) - ao(ytoyo-ytoyo)Hx (23) 

Xo 

The terms in D2 involve the boundary conditions from the second partials of y 

and y as 
tb     xb   -  xb      - xb    -  Xb 

D2 = /    ^yxy|     - Jiyxy|     + A*yxy|     - a*yxy|    }dt 
t0 X0 X0 Xp Xp 

tb        - -      - 
= J     Ubyxbyb - ^oyxoyo - ^yxbYb + ^yxoYo 

to 

+ WyxhYh - ^pYxpyp -  ^byxbYb + ^yxpYp^t (24) 



The terms in D3 Involve the boundary conditions from the fourth partials of y 

and y as 

tb    - xb _ xb   -    xb    _     xb 
D3 = J^ tXyxxyx|  - (Xyxx)xy|  - Ayxxyx|  + (£yxx)xy|  }dt 

tO Xo X0 XQ X0 

tb        - - 
" J    ^byxxbYxb - ^oyxxoyxo - Uyxx)xbyb + (xyxx)xoyo 

-  ^bYxxbyxb + ^oYxxoYxo + (^yxx)xbyb " (xyxx)xoyo>dt      (25) 

In order that D i 0 in Eq. (22) it is sufficient that 

Di 5 0 (26a) 

D2 = 0 (26b) 

and D3 = 0 (26c) 

END CONDITIONS FOR THE ADJOINT SYSTEMS 

In order to satisfy the requirements in Eq. (26) we separate them again 

in three different parts. 

(a) Let us assume that the adjoint variables are 

yb ■ kiy0  ,  y0 = kiyh (27) 

ytb = -ab~laoMyto  »  yto = -ao~LQtbkiytb (28) 

where Iq is a constant.  The above adjoint boundary conditions satisfy the 

requirement that D^ = 0 in Eq. (23). 

(b) Let us assume the following adjoint variables 

_   k^ 
(29) 

(30) 

Yb ■ k2yb yo - ,— yo 

-       M2 

yp - k3yp 

yxb - k2yxb yxo ■ ;— yxo 
k2 

yxp - k3yXp 



Where Eq. (29) is Inconsistent with Eq. (27) and k2 is another constant. 

Equations (29) and (30) imply that D2 = 0 in Eq. (24). 

(c) The following boundary conditions are assumed 

_   ki2       _ _ _       ki2 

yo = ,   Vo     >  Yxo = Yxo  »  Yxxo ~  Yxxo  »  yxxxo = C;  ) Yxxxo  (31) 
k2 k2 

Yb = k2yb  ,  yxb = yxb  .  yxxb - yxxb  .  yxxxb = k2 yxxxb  (32) 

Equations (31) and (32) satisfy Eq. (25).  Thus D3 = 0. 

By giving the appropriate values of the adjoint variables in terms of the 

original variables one may find that the requirement D s 0 can be satisfied. 

This leads to the condition in Eq. (6) that 

6J = 0 

for all arbitrary variations 6y and 6y. 

FIRST VARIATION 

Since the variations 6y and 6y are independent to each other, the part of 

6j in Eq. (6) with variation 6y can be expressed as 

xb tb -      xb tb - 
6j(6y) = /  J   SyLydt + /  /  6yQdtdx =0 (33) 

xo  ^-o xO  ^0 

Where Ly is given in Eq. (18) and contains second and fourth partial 

differentiations in y.  It is intended to Include only low order partial 

differentiations in 6J(6y).  This can be achieved by considering the 

variations of the bilinear expression I given by Eqs. (15) and (16) as, 

tb xb     _ 
6j(6y) = J   J   [ayt6yt + Xyxx6yxx + ilyx6yx]dtdx 

to xo 

tb xb 
+ J   J   Vx^xdtdx (34) 

t0 x0 



A different form of the above variation can be obtained from Eq. (17) as 

xb     - tfe 
Sl(6y) = -// 6yLydtdx + /  oyt67|  dx 

xo      to 

tb       -  Xb - Xb - Xb - Xb 
+ /    tXyxxfiyxl      - (Ayxx)x6y|      + £yx6y|      + £*yx6y|     }dt (35) 

t0 XQ XQ XQ Xp 

Equating Eqs. (34) and (35), solving for the term containing integrals for 

6yLy and substituting into Eq. (33) we have 

Xb      - tb     tb     - Xb 
6j(6y) = /  (ayt)6y|  dx + /  Xyxx6yx|  dt 

XQ t0 tg XQ 

tb - Xb Xb tb  Xb  - 
+ /       {Uyx -  ayxx)x]6y|       + **yx6y|     }dt + /       /       6yQdtdx 

to X0 Xp to  Xo 

tb  Xb      - 
- /  /   (ayt'Syt + Xyxx^xx + ^yx^x + ^yx5yxH(x-Xp)}dtdx - 0  (36) 

to x0 

This is the key equation which uses variational principle in solving a 

mixed initial and boundary value problem for a fourth order partial 

differential equation. 

DISCUSSION OF THE VARIATIONAL EQUATION 

Let us discuss the various terms in Eq. (36), the variational equation 

for the beam problem, into three pajrts as follows. 

(1) The initial conditions of the original variables are given and 

variations of the adjoints at the far end are zero.  The first term in Eq. 

(36) contains the product of yt^y evaluated at the initial condition yto^Yo 

and at the final condition ytb^yb*  Since the value of yb are known as given 

by Eqs. (27) and (29), 6yb = 0.  That is, the variations of the adjoint 

variable at the far end are zero. 



(2) The boundary conditions of the original variables and variation of 

the adjoints can be determined.  The second through fourth terras are the 

boundary terras involving the variations 6y and 6yx and the variables yx> yxx, 

and yxxx at both boundaries.  For a beam the end conditions can be expressed 

as 

Fixed End    y = 0        y = 0        6y = 0 

yx = o     yx = o     5yx = 0 

Hinged End   y=0        y=0        6y=0 

yxx =0      yxx = 0      6yxx = 0 

Guided End   yx = 0       yx = 0       fyx "  0 

yxxx " 0     yxxx = 0     6yxxx = 0 

Free End     yxx =0      yxx = 0      6yxx - 0 

yxxx = 0     yxxx = 0     6yxxx = 0 

The variations in the adjoint variables shown in the last column coincide to 

the same end conditions in the original variables given in the first column, 

whether it is on the left or the right boundary.  It is noted that the third 

partial derivatives can be evaluated at the boundaries. 

(3) Interior region - The last two terras give the interior where the 

forcing function Q, the adjoint-variations 6y, 6yt, 6yx, and 6yxx and the 

variables yt, yx, and yxx are shown.  No third order partial of y with respect 

to x is present.  Thus the variables that are needed for the coraputation are 

y» yt» yx> yxt» yxx» and yxxt*  This requires a c2 continuity in the spatial 

direction and a c1 continuity in the time domain. 



TRANSFORMATION OF COORDINATES 

The integral signs in Eq. (36) can be converted into summation signs if 

discrete intervals for integration are used. We may take some scale factors 

to nondimensionalize the problem by giving 

t0 - 0 , tb - 1     0 < t < 1 (37) 

x0 = 0  , xb = 1     0 <; x < 1 (38) 

Moreover, Eq. (36) can be discretized by letting 

5 = Ht - i+1    0 < 5 < 1    i - 1,2 H (39) 

n " Rsc - j+1    0<n<l     j - 1,2,....K (40) 

where H and K are number of intervals for t and x respectively.  Thus the 

partial derivatives are 

dy 3y 
yt = — = H — = Hyr (41) 

at   85   % 

8y    8y 
Yx = - = K -- = Kyn (42) 

dx   3n 

92y 3yx 

ax2 8n 

83y 3yxx 

8x3      8n 

yxx = r" = K -~ = K2ynn (43) 

yxxx = ~3 = K ~~ = K3ynnn W 

Use of Eqs. (36) through Eq. (44) then leads to 

0 = 6j(6y) 

K  1 -     tb i 
= I    !     [ctHy^i^lSyC1.:))!  - dT1 

j=l  0 t0 K 

+ I    / [^yn - UK^T^iayCl.J)! ' - d? 
1=1  0 x0 H 

10 



+    I     /     (XK2ynn)K6yT1(i,J)|       - d? 
i=l     0 XQ  H 

1 - xb   1 
+    I    /     ^Ky^yCi.J)!       - d^ 

i=p     0 xp H 

K       1       H       1     - 1 1 
+    I     /     t  I    /     6y(l,J)Q - dU- dn 

j=l     0     i=1     0 H K 

1 1 
K       1       H       ! 

-    I     Lil     \     [aH2y5(i.J)6y5(i,J)  +  XK^y^ + JlK2yn6yn]   i dU  - dn 
j-1     u     i=l     0 H K 

K       1       H       ! _ 1 1 

-     I     /     <  I     /     [^K2yn6ynH(x-Xp)]   - d?}   - dn   =   0 
i=p     0     i=1     0 H        H K 

(45) 

GRID SYSTEMS 

The (24x1) vector Y^M) has a grid of four (6x1) vectors Y^M) through 

Y4(1.J), thus 

Y(i.J) = {[Y1(i)J)]T[Y2(i.J)]T[Y3(i,j)]T[Y4(i,j)]T        (46) 

Each of the (6x1) vectors has six components consisting of the function, its 

first and second partials in spatial directions, and its mixed partials in 

space and time. 

Y,(i.J) = 

y(Ci,nj) 

y^Ui.nj) 

yn(5i,nj) 

y?n(5i.Tij) 

ynn^i.nj) 

y5Tin(5i,nj) 

Ys^.J) = 

y(5i,nj+i) 

yc(5i»nj+i) 

Yn^i'^j+l) 

y5n(5i,nj+i) 

ynn^i.nj+i) 

y^nn^i.'ij+l 

U 



Y2(i.J) = 

y(Ci+i,nj) 

yc(5i+i.nj) 

ynCSi+i.Tij) 

ynnC5i+i.Tij) 

ycnn^i+i.nj) 

Y4 (i,j) = 

y(Ci+i.nj+i) 

y^C^i+i.^j+i) 

yn(5i+i,nj+i) 

yrin(5i+i,nj+i) 

yCnn^i+l.^j+l) 
(47) 

If we increase the row index from i to 1+1, then the grid point shifts 

down by one step and the following holds 

Yl(i+l,j) = Y2(
i.J)    ¥3(1+1.3) = Y^i.J) (48) 

If we increase the column index from j to j+1 then the grid point shifts to 

the right by one step and one obtains 

Yl(i,j + 1) = Y^.J)    Y2(
i.J+1) = Y4(1.J) (49) 

The  following  diagram  shows  the  relationship of   the grid  system. 

I 

Yl(i,j) YaCi.J)   =  Y^i.J+D Y3(i.3 + 1) 

[Y(i.J)] [Yd.j+D] 

Y2(i'J) 

—   11 
YiCi+LJ) 

YA(i.J)   ='      Y2(i'J + 1> 

YjCi+l.j)  = Y1(
1+1

.J
+1

) 

YAC^J + D 

i'(i+l,j+l) 

[Y(i+l,j)] [Y(i+l,j + l)] 

Y2(i+l,j) Y4(i+l.J)   - Y2(i+l.J+l) Y4(i+l,j+l) 

12 



SPLINE FUNCTION 

We may express the variables yvi»J) and SyCijJ) In Eq. (45) In terms of 

the (1x24) spline function aT(5,n) and the (24x1) node point function Yvi»j) 

as follows. 

yti.^U.n) = aT(5,n)Y(i.J) (50) 

where 

aTa,Ti) = ([ak^.n)]1 [a2(5,n)]T [a3(5.n)]T [a^^n)!1    (51) 

and 

6y(i»J)(C,n) = aT(?,n)6Y(i.J) (52) 

A typical term for a product can be written as 

6y(i.j)y(i,j) = [6Y(i..1)]Ta(5,n)aT(5,n)Y(i.J) (53) 

CONCLUSION 

A bilinear form of the original and adjoint variable Is employed In 

determining the coefficients of the variations of the functions and their 

first derivatives.  There Is no term Involving the variations of any higher 

derivatives than second.  In solving mixed boundary and Initial value problems 

of a fourth order partial differential equation using spline functions, the 

computation may be simplified considerably If the variable In time can be 

truncated Into arbitrary sections.  The entire problem Is divided Into several 

strips of distinct time intervals, each strip containing mostly the boundary 

value problem. 

The variatlonal principle for spatial and temporal problems with boundary 

and initial conditions have been investigated.  This variatlonal principle is 

very general in scope and can be applied to many linear partial differential 

13 



equations.  The principle is applicable if the bilinear concomitant is 

identically zero.  This leads to the requirement that a set of end conditions 

for the adjoint systems must be found to satisfy this condition.  Otherwise 

the variational principle as stated may not be applicable. 

The beam equation (with one dimensional spatial direction) satisfy these 

variational principles.  For future work the analytic solution of these 

equations using finite element method will be studied.  The assembly of the 

elements of the matrices involved in the formulation will be demonstrated. 

The stability problem in numerical solutions on these equations will also be 

investigated.  This lays the foundation for the gun dynamics problem to be 

studied in the future. 

14 



REFERENCES 

1. Simkins, Thomas E., "Transverse Response of Gun Tubes to Curvature-Induced 

Load Functions," presented at the Second US Array Symposium on Gun 

Dynamics, Watervliet, NY, September 1978. 

2. Wu, Julian, "Gun Dynamic Analysis by the Use of Unconstrained, Adjoint 

Variational Formulations," presented at the Second US Army Symposium on 

Gun Dynamics, Watervliet, NY, September 1978. 

3. Shen, C. N. and Wu, J. J., "A New Variational Method for Initial Value 

Problems Using Piecewise Herraite Polynomial Spline Functions," presented 

at the 1981 Array Numerical Analysis and Computer Conference, Huntsville 

AL, February 1981. 

4. Shen, C. N., "Method of Solution for Variational Principle Using Bicubic 

Herraite Polynomial," presented at the 27th Conference of Army 

Mathematicians, West Point, NY, June 1981. 

5. Stacey, W. M., Jr., Variational Methods in Nuclear Reactor Physics, 

Academic Press, 1974. 

15 



APPENDIX 

THE VARIATIONAL PRINCIPLE 

A more accurate estimate can be made by constructing a variational 

principle.5 By using the adjoint variable y as a Lagrange multiply we have 

J[y.y] - <Qy> + <y,<QH.y)> 

= <Q>y> + <y,Q> + <y,Ly> (Al) 

In order that J be a variational principle the following requirements must be 

satisfied. 

(a) J is stationary about the function ys which satisfies the following 

relation 

LYs = -Q (A2) 

(b) The stationary value of J deduced from Eqs. (2) through (5) is 

J[y.y] = <Q,ys> + <Q,ya> (A3) 

where ya is the actual solution.  Consider first the stationarity of J by 

taking the variation of Eq. (Al) 

6J = <Q,6y> + <6y,Q> + <6y,Ly> + <y,L6y> 

= <6y,(Ly+Q)> + <6y,(Ly+Q)> 

- <6y,Ly> + <y,L6y> (A4) 

We will make an effort later to impose certain conditions in order that 

the following equality holds: 

<y,L6y> = <6y,Ly> (A5) 

where L is the adjoint operator. 

* 

5Stacey, W. M. Jr., Variational Methods in Nuclear Reactor Physics, Academic 
Press, 1974. ~~ " 
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By combining Eqs. (A4) and (A5) one obtains 

6J = <6y,(Ly+Q)> + <6y,(Ly+Q)> = 0 (A6) 

Since the variations 6y and 6y are arbitrary it leads to the requirement that 

the stationary values ys and ys must satisfy 

Lys = -Q (A7) 

Lys = -Q (A8) 

Since Eq. (A7) is the same as Eq. (A2) therefore, J is stationary about the 

function yg. 

Equation (A8) is the adjoint equation in terras of the adjoint operator, 

L, the adjoint variable y, and the adjoint forcing function Q. 

It is noted that 6J in Eq. (A6) vanishes and is independent of ^the 

arbitrary variations 6y and 6y.  By using 6J one can claim that the estimate 

is very accurate and free from the arbitrary variations. 

Using the relationship in Eq. (A7) the stationary value of J from Eq. 

(Al) is 

•Jlys.ys] = <Q,y8> + <ys.Q> + <ys.Lys> = <Q,ys> (A9) 

Since J is stationary and 6J -► 0, then 

<Q,ys> ♦ <Q,ya> (A10) 

which is the requirement given in Eq. (A3). 

It is noted that Eq. (A6) contains no boundary terms to be satisfied. 

This bears an important point in the future discussion. 
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